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Early time diffusion for the quantum kicked rotor with narrow initial momentum distributions
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We investigate analytically and numerically early-time momentum diffusion rates fob-kieked rotor
across the quantum to classical transition, i.e., as increased total system action produces more macroscopic
dynamics. For sufficiently narrow initial momentum distributions we find a rich structure of resonances in
these diffusion rates as a function of the effective Planck’s constant. Our study is set in the physical context of
the atom optics kicked rotor, and numerical simulations confirm that the resonances persist with kicks of finite
duration and with other typical experimental imperfections, such as spontaneous emission noise. Our results
should be testable in experiments where narrow initial momentum distributions are prepared using, for ex-
ample, velocity selective Raman transitions or Bose-Einstein condensates.
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. INTRODUCTION corresponding to a temperature of aroundK). For such
initial momentum distributions, the momentum diffusion

In recent years there has been much interest in studyingates for the first two kicks in the quantum and classical
the transition from quantum to classical behavior in thesystems are equal, giving a short period of time over which
5-kicked rotor(DKR), as an example of a nonlinear dynami- quantum mechanical effects are essentially unimportant in
cal system which exhibits contrasting behavior in the twodetermining the dynamics of the system. _
regimes. In particular, the chaotic diffusion in the classical However, recent experiments in quantum chaos using cold
DKR is completely suppressed by coherence effects in thatoms in optical potentials have begun with much narrower

analogous quantum systefih,2]. This phenomenon, known initial momentum distributions, either by using Bose-

as dynamical localization, has been demonstrated, along witginstein condgnsatéw].or by sel'ectmg a slice of g.thermal
many other properties of the DKR, in atom optics eXloeri_dlstrlbu'[lon using velocity selective Raman transitigf].

ments in which a cloud of laser-cooled atoms interacts with 47 this article, we show that for a sufficiently narrow initial

pulsed standing wave of lighig]. In these experiments, the omentum distribution, a much richer structure of diffusion
. i . ' resonan in ion i rv han th redi
DKR must be generalized to kicks of finite length, and the esonances in action space is observed than that predicted by

. . : . the results of Shepelyansky. These resonances evise in
resulting system is referred to simply as the kicked rotor.  yhe second kigkfor which we derive an exact result. We also
Recently there have been several studies of resonangge numerical simulations to investigate the corresponding
phenomena in the diffusion rates for the DKR as the dynamresonances in kicks 3—5. These resonances are pronounced
ics of the system are made more macroscopic or less macrgnd should be observable experimentally; this is emphasized
scopic by varying the total system action, i.e., by varying thepy our numerical simulations, which extend these results to a
effective Planck's constant for the system. These studiesystem with a finite pulse length and physically realistic lev-
have focused largely on the diffusion rates found in the lateels of noise. Our analytical results are applicable generically
time regime when the process of dynamical localization iso the quantum DKR, but we set our study in the context of
disturbed by a fixed level of decoherence. Decoherence prdhe AOKR to emphasize that our results should be directly
duced by various forms of environmental coupling has beetestable against experiments with cold atoms.
investigated, including continuous position measurements

[4] and, specifically in the atom optics kicked rof&OKR), Il. THE SYSTEM

spontaneous emission decoherefise The diffusion reso- The AOKR is realized using a cloud of ultracold atoms
nances found for spontaneous emission decoherence haygich interact with a standing wave of laser light of fre-
also been verified in AOKR experimer{ts—8|. guencyw, , detuned far from the frequenaey, of the appro-

Resonances are also known to occur in early-time mopyriate atomic transition. The laser is pulsed with peffcahd
mentum diffusion rates for the quantum DKR, that is, thepulse profilef(t). Due to the large detuning, the internal
diffusion rates after just a few kicks. These resonances agtomic dynamics can be eliminated, and the resulting single
pear in results derived by Shepelyandlgy, and have also particle Hamiltonian(for just the external degrees of free-
been investigated numerically for the AOKR]. However, dom) is [3]

these studies have typically taken place in the context of a ~ N
system with a relatively broad initial momentum distribution ~_ P hQett - B
(e.g., for the AOKR in Ref[5], with a thermal distribution H=om ™ 8 COS(Zk'X)nZl f(t=nT), @

wherex and p are the atomic position and momentum op-

*Present address: Institut rfiTheoretische Physik, Universita erators, respectively, ard is the wave number of the laser
Innsbruck, A-6020 Innsbruck, Austria. Electronic address:light. The effective potential strength &¢=Q?/8, where
adal025@phy.auckland.ac.nz Q/2 is the resonant Rabi frequency, afds the detuning

1063-651X/2002/66)/05621@8)/$20.00 66 056210-1 ©2002 The American Physical Society



A. J. DALEY AND A. S. PARKINS PHYSICAL REVIEW E66, 056210 (2002

from resonance. These quantities may be adjusted to accoyw,12]. Using the alternative definitioB (n) for the diffusion
for hyperfine levels in any particular atomic spedisse, for  rate and assuming a uniform distribution of initial conditions
example, Ref[5]). We can rewrite this Hamiltonian in di- jn position and momentum space, he estimated the quantum

mensionless units as diffusion rate for small kick numbers by computing a series
- w0 of quantum correlationgThese calculations are reproduced

P 9 r in more detail in Ref[13], and the results are summarized in

H 2 kcos‘f’n; f(t"=n). @ the Appendix) Shepelyansky’s results predict broad reso-

R L R R nances in the early-time diffusion rates as a functioR,oh

Here, ¢=2kx, p=2kTp/m, t'=t/T, and H’ particular for kicks 3—5. The correlations he evaluated also
=(4k|2T2/m)I3|. The classical stochasticity parameter islead to the conclusion that diffusion rates for the first two
given by k=QswgT7,, Wherer, is the pulse length and kicks, D(1) andD(2), should be equal, and should be the
wg=7kZ/2m. In laboratory experiments it is common to Same as the diffusion rate in the classical system for these
choosef(t’) to be a square pulse, i.€i(t’)=1 for 0<t’  two kicks for allk, i.e.,D(1)=D(2)= x?/4 (see the Appen-
<a, wherea=7,/T, in which casek= «/a. If we choose dix). This has been verified numericall§] in the context of
f(t') to be 8(t'), then this system reduces to the standardhe AOKR with a typical thermal initial momentum distribu-
DKR, andk= «. tion at a temperature of 12K, which corresponds to a dis-

In the case of the DKR, the evolution of the system in thetribution with a Gaussian width in unscaled units) of

Heisenberg picture is represented by the standard map, 0p/(2%k)=4.
However, to our knowledge, no one has previously looked

Gns1=bnt P (33 in detalil at the equivalent results with much narrower initial
momentum distributions, despite the fact that such distribu-
;)n+1=f>n+'<3in($n+1), (3b) tions are accessible experimentally. In fact, using Raman

transitions, Steclet al. have isolated momentum distribu-
where g, = ¢(t’ =n) andp,=p(t'=n), with the values re- tlons with widths as narrow as,/(2%k;)=0.03[11]. Fur-
corded immediately after the kick &t=n. Note that there thermore, for sufficiently small values & the initial mo-
are multiple definitions of the standard map, and in this ongnentum distribution in scaled units becomes very narrow
the first kick occurs at’ =1. even for ordinary thermal distributions, because @gleads
In the scaled units, we havep,p]=ik, with k=8wgT. to a scaling of the width of the initial momentum distribution

Thus the quantum nature of the system is reflected by aWith k of the form o,=ko,/(2%k)). For such momentum

effective Planck’s constarit which scales as we change the dlstnpynons Shepelyansky’s assumptions of unlfqrm initial
total action in the system by altering the pulse pefodlote con_d!tlons br.eak dowr). As.we W'.” demonstra.te n the re-
that with reference to the effective Planck’s constant we caimnaining sections of this article, this leads to diffusion rates

rewrite the relationship between the scaled momentum unitQn Short timescales, including(2), which exhibit consid-
p and unscaled momentum unjisas erably more structure than that predicted for the case consid-

ered by Shepelyansky.
pl(2%k)) = plkK. 4
IV. ANALYTICAL RESULTS FOR THE SECOND KICK

lll. BACKGROUND We can evaluate the diffusion rate for the DKR in the

We define the momentum diffusion rate to be the chang&econd kick,D(2), by expanding the definition in Eq5)

in the kinetic energy from one kick to the next, using the quantum standard map given in E3). Specifi-
cally, we can write
(pn) (pn-2)

D(n)= . 5 ~ -
(M=""""3 ® D(2)=(p3)2—(p})/2
. . . . . . 2
Some investigations of momentum diffusion rates in both the KT 5 K o~ o~ R
guantum and classical DKR systems have used an alternative B 7(sm2(¢2)>+§<plsm(¢2)+sm(¢2)p1)
definition,
S+ )+ S (puSi o po)
-~ - R - = —(si =(p;Si
~ ((Pn=p0)®)  {(Pn-1—P0)®) 2 pr+ @U)* 5ipasidrtpy
D(n)= > - > : (6) o
+sin(¢p1+p1)p1). (7)

For sufficiently narrow momentum distributions and high

kick strengths, these two definitions are essentially equivaWe first evaluate the expectation values for a single momen-

lent. We choose the first definition because it represents thi@m eigenstate|p,), and then take an incoherent average

guantity which is directly measured in experimental studiesover a Gaussian momentum distribution to obtain a final ex-
The primary analytical investigation of early-time quan- pression foiD(2). Evaluating the expectation values for the

tum diffusion rates in the DKR was made by Shepelyanskyingle momentum eigenstate is algebraically intensive, and
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involves multiple applications of several identities. Most no- 250}

tably, we require two special cases of the Baker-Hausdorff fgg P o i ]
relation, in particular, 100l AN 7

A+B_ BoALA B2 gl == N L

eA eAé (8) 50} . . ":./
N R I PP 250}
for A andB such thaf{ A,[A,B]]=[B,[B,A]]=0, and 2000 c,=0.2 - .
150" N ron -
100} N AN '

exp(A+B)=exgd B(e°—1)/c]lexpA), 9)

-50}
250}
200f c =03
150F7 N~ .
100} N e TP
) _ 50 P NN e~ - N - 1
cos{zsm(a)]—Jo(z)JrZE Jo(z)coq 2k ) o == |
k=1 5ol

250}

and 200} o, =1

for A andB such thaf A,B]=cB, wherec is a constant. We
also make use of the Bessel function identities

Diffusion Rate

[’

sir[zsin(a)]zzg,o Jos1(2)sin (2k+1) 6], ) I ———

3 4 5 6 7 8

. . . 1 2
whereJ,(z) is an ordinary Bessel function of order Effective Planck’s Constant

This derivation is presented in detail in R¢i4]. The
expectation value for a single momentum eigenstate is found FIG. 1. Diffusion rates in the second kicR(2), for thequan-
to be tum &-kicked rotor as a function ok plotted for various values of
o,=0,/(2fik), with py=0, as predicted by Eq(12). Kick
strengths arec= 10 (solid line), 15 (dashed ling and 20(dash-dot

<Po|ﬁ§|Po>_<Po|2ﬁ|Po> .
line).

1 .
=5 k(1= 35(K4q)c082p0) ]~ 2k 31(Kg) poSin( po) . ,
Fig. 1 shows Eq(12) plotted as a function of for three
+KZ[JO(Kq)—Jz(Kq)]COS(po)COS{k/Z), (10) values of x and four values ofo,=a,/(2%k)) (i.e., o,
=o,K). We choose to vary the width of the initial momen-
where K,=2«sin®?2)/k and K= 2xsinR)/k. If we now tum distribution in this way because in experiments using the
average this over an incoherent Gaussian distributiop,of AOKR, it is common to choose the initial temperature of the
values which is centered qi and has widthr,, we obtain cloud, and then fix this value whilk is varied. This corre-
the result sponds to a fixed width in real momentum units, and hence a
varying width in our scaled units. We see, as we expect, that

1 P — for large values ofr,,, the diffusion rate is quasilinear except
2D(2):§KZ[l_Jz(KZq)efzg”COE(PO”_ZKJl(Kq) at low values ofk, where it tends to the diffusion rate for a
) 5 single initial eigenstate,p,=0), ask—0 ando,—0. For
x[cr,fe*"p’zcos{po)+p0e*"p’23in(po)] lower values ofo,,, we see a complicated resonance struc-

5 P Pp— ture as a function ok. This structure is a specifically quan-
+ kT Jo(Kg) = Ja(Kg) Jcodk/2) e~ 77 cod po). tum mechanical effect, because it relies onkhdependence
(12) of the correlations. It is particularly surprising that such a
dramatic quantum effect can occur after only two kicks, and
This is our final expression for the diffusion rate in the it is interesting that the structure is very different to that
second kick, and we notice immediately that it reduces to th@redicted by Shepelyansky. Moreover, we see fromdhe
quasilinear value as the initial momentum distribution be-values in the figure that the initial momentum distributions
comes broader, but it predicts complicated and interestingvhich produce this structure should be experimentally real-
structure as a function & for sufficiently smallo, . izable, as momentum distributions with,<0.1 can be pro-
In the particular case wheg,=0, we obtain the result ~duced using velocity selective Raman transitions, as demon-
strated in Ref[11], and using Bose-Einstein condensates

L2 ) [10].
2D(2)= §K2(1—32(K2q)e 200) —2kd4(Kg) ooe™ 7if? We note that as the kick strengihis increased, the reso-
. nance peaks shift to high&rvalues, and increase in magni-
+KZ[JO(Kq)—Jz(Kq)]cos(k/2)e*"p’2. (12 tude. Extra structure is also introduced at l&walues for
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FIG. 3. Surface plot oD (2)/«?, for the quantums-kicked rotor

with an initial momentum eigenstatg,=0, as a function ok and
k, as predicted by Eq11).

three different initial momentum eigenstatépy=0), |po

=0.5), and|py=K) (i.e.,p,=0, 0.5, and 1.p Note that the
diffusion rates have been divided Ix? so as to emphasize
the positions of the diffusion resonances, rather than the in-
S 2w c[etasienlr:: ithe gat(;s z;s 2ecomn(Ts Izlairgr?J. I\ilfo;r;z als?1 t?datrthi
Effective Planck’s Constant i%i?igl distr%stition ofcn?or%Zn?a,ypfogide){j theew(i:c(i)thsofeth?s
FIG. 2. Diffusion rates in the second kicR,(2), for thequan-  distribution 0;,<<0.1. This is actually apparent from a com-

tum &-kicked rotor with o,=0.1, plotted as a function of for  Parison with corresponding curves in Figs. 1 and 2.

various values opn=po/(2fik,), as predicted by Eq(11). Kick It is interesting to examine the relationship between the

strengths ar&= 10 (solid line), 15 (dashed ling 20 (dash-dot ling resonance struct_ure observed here an(_j so-called quant_um
resonances,” which have been the subject of nhumerous in-

larger «. This introduction of new structure continues to oc- Vestigations, such as the original treatments in Rafs-17
cur even fork values much larger than 20. and the more recent analysis in RdfE3,19. Quantum reso-

It is interesting to investigate how the resonance structur@ances occur for particular values Bf given appropriate
in the diffusion rate during the second kick changes if theinitial conditions. For example, consider an initial momen-

initial momentum distribution is not centered pg=0. Eq.
(12) is plotted in Fig. 2 for various values qb,=po/k
=pd/(2fik), with ¢,=0.1. As with the diffusion rates for ]
po=0, these rates exhibit interesting structure, which isngﬂq
o
[}

1

washed out for large, . This washing out can be seen from

the dependence of Eql1) on the width of the initial mo-
mentum distribution. The most interesting feature here is that =*#%
the positions of the diffusion rate resonances are strongly
dependent on the value pf. This is partly because different 2
values ofp, give different weighting to different terms in the
diffusion rate expression, but much of the variation results
from thek dependence qf, that occurs due to the scaling of K
our momentum units. Again, because it is possible to create
initial momentum distributions with nonzero mean momen-

tum with respect to the standing wave agsse, for example,
reference[11]), the initial momentum distributions which m 1 2

lead to these results should be experimentally realizable. Effective Planck's constant

Another perspective on the variation bf(2) as a func- FIG. 4. Surface plot oD (2)/«?, for the quantums-kicked rotor

tion of x, K, andp,, is provided by Figs. 3—5. These figures with an initial momentum eigenstatp,=0.5, as a function ok
show surface plots dD(2) as a function of botlk andk for  and, as predicted by Eq11).
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Effective Planck's constant

-50¢
FIG. 5. Surface plot ob(2)/«?, for the quanturms-kicked rotor 150}
with an initial momentum eigenstatg,=1, as a function ok and 100} - c,=1
k, as predicted by Eql11).
50 NP
0 7 N>
tum eigenstatép,=jK), wherej is an integer. Through the sob . , , , , , ]
kicking process, this state can only couple to eigenstates o 1+ 2 3 4 5 6 7 8
=(j+]j")k), wherej’ is also an integer. Ik is an even Effective Planck’s Constant
multiple of 27r, then in between kicks the statés= (] FIG. 6. Comparison of simulated diffusion rates in the third

+j')K) each accumulate the same phddee to the free kick, D(3), for the quantum kicked rotor 4=0.005, 7

evolution operator exfp?/(2k)]), which is identically one. ~=10%, k=15, po=0) with Shepelyansky's analytical resiiq.

This leads to a ballistic energy growth, and dynamical local{A5)], for varying values otr,= o, /(2%:k)). The simulation resuilts
ization does not oceur. are shown as points joined by a solid line, and the statistical errors

o . in th int imately th der of itud th
In contrast, ifk is an odd multiple of Zr, then the phase N I POIN'S &re approximately e same orcer o1 magniude as te

. . . oint markers. Shepelyansky’s result is shown as a dashed line.
may be either+1 or —1, and one finds, quite remarkably, P pey y
that the system returns identically to its initial state after . o _
every second kick16]. This effect is known as a “quantum tion of these maxima on botk andk in Figs. 3-5. In addi-

antiresonance,” and shows up in Fig. B,&0) and Fig. 5 tion, many diffusion resonances occur at valueskofor
(po=K) as a minimum inD(2)/x? at k=2 (with value which we observe no clear periodic behaviorpgss varied.

D(2)=— «?/4, which cancelD(1)=x«%4 and returns the Such behavior should be a characteristic of “regular” quan-

system to its initial energy tum resonances.
Conversely, folpy= 0.5k (Fig. 4 we observe a maximum
in D(2) atk=2s. This occurs because for all states with V. NUMERICAL RESULTS FOR KICKS 3 -5

momentgp=(j' +1/2)k, with j" an integer, the accumulated  To investigate similar results for kicks 3—-5 we use nu-
phase between kicks is {1i)/ 2, i.e., the same. This leads merical simulations, as exact analytical results Bqgn=3)
to ballistic growth, withD(2)=23«?/4, or, in terms of ener- are complicated to obtain and because of their complexity
gies,E(n) =n’x?/4+E(0). would not significantly increase our understanding of the
The other resonances observed in these diffusion rates/stem. These simulations are set in the context of the
(i.e., those not occurring &=2j for integerj), are un- AOKR, and model a master equation which includes effects
doubtedly related to similar interference effects as those thatue to spontaneous emission decoherence, the level of which
cause ballistic motion at quantum resonances. This relatioris characterized by the position averaged spontaneous emis-
ship could be very interesting, and deserves further investision probability per kick,;. Our simulations are based on a
gation. However, the resonances we observe here are nbtonte Carlo wave function method, as described in Refs.
solely the result of a simplification of the action of the free[5,20]. We typically use 1000 trajectories, sampled from the
evolution operator on appropriate momentum eigenstates, appropriate initial momentum distribution, and after evolving
we observe at quantum resonances. Instead, they exhibitemch of the trajectories we take an incoherent average over
nontrivial dependence on the value ©f and appear to in- the final momentum distributions.
volve a complicated interaction between the particular mo- Figures 6, 7, and 8 show the diffusion rai@63), D(4),
mentum states that the system couples to during the first kicknd D(5), respectively, and the early-time quantum diffu-
and the phase factors that those states accumulate during freilen rate predicted by Shepelyansky, E45) is shown as a
evolution. This is illustrated by the dependence of the locadotted line for comparison. It can be clearly seen that the
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FIG. 7. Comparison of simulated diffusion rates in the fourth  FIG. 8. Comparison of simulated diffusion rates in the fifth kick,
kick, D(4), for the quantum kicked rotor &=0.005, D(5), for the quantum kicked rotor(QKR) (a=0.005,
=10%, =15, po=0) with Shepelyansky's analytical res{iEq. = =10%, k=15p,=0) with Shepelyansky’s analytical resykq.
(A5)], for varying values ofr,= o, /(2#k;). The simulation results  (A5)], for varying values ofr,= o, /(2%k). The simulation results
are shown as points joined by a solid line, and the statistical errorare shown as points joined by a solid line, and the statistical errors
in the points are approximately the same order of magnitude as thié the points are approximately the same order of magnitude as the
point markers. Shepelyansky’s result is shown as a dashed line. point markers. Shepelyansky’s result is shown as a dashed line.

system generally settles into a diffusion regime with rates
similar to Shepelyansky’s values as the kick number intures in the context of a kicked rotor with a finite pulse
creases. However, we see a significant contrast in this behalength, and with the addition of noise sources commonly
ior for different values ofc,,. Essentially, the broader the present in an AOKR. To do this we use the same numerical
initial momentum distribution, the more rapidly the systemsimulations described in the previous section. Example re-
settles into this regime. The lower the valueogf, the more  sults from these simulations are presented in Fig. 9, along
complicated structurdand thus the least agreement with with the analytical results from Eq12). These two sets of
Shepelyansky’s resultsve observe in the diffusion rates. results exhibit excellent quantitative agreement, as do simu-
The most complex structure normally occurs at low values ofation results for other values of and o,. Similar simula-
K, where the scaling of the initial momentum distribution for tions with an initial momentum distribution which is not cen-
the AOKR makes the distribution the most narrow. tered onp=0 also exhibit very good agreement with the

It is interesting to note, for,=0.01, the behavior of the  corresponding analytical results. This is very encouraging,
maxima and minima &= 2= due to the quantum antireso- and gives a strong indication that these results are realizable
nance. As we expect, we observe a maximum at this point foi a real experimental system.
the diffusion rate in the third kick, but we observe a mini- e have also added other noise sources to our simulations
mum for the diffusion rate in the fourth kictas the system  gych as amplitude noise on the kicking strength, which mod-
with an initial momentum eigenstafg,=0) would retum s variation in the intensity of the laser pulses producing the
again to that initial eigenstate after every second kigken  gianding wave. In addition, we have accounted for a radial
for such a narrow initial momentum distribution, however, g, sgjan intensity profile of the standing wave by including
the value at the m|n|mzum in the fgqrf[h Kick is not as small 3Sn our model a small spread of kick strengths equivalent to
we would expect ¢ «°/4) for an initial statelpo=0), and .5 across the cloud of atoms. With realistic levels of noise,
the quantum resonance effects here are quite clearly wash still observe resonances which are sufficiently pro-
out by a broader initial momentum distribution. nounced to be experimentally measureable.

In a typical AOKR experiment, the initial cloud is re-
leased from an optical trap, the cloud is kicked using the

In order to confirm that our results are experimentallypulsed standing wave, and is then allowed to expand freely
measurable, we need to investigate these resonance strdofr a certain period of time. The momentum distribution is

VI. EXPERIMENTAL CONSIDERATIONS

056210-6



EARLY TIME DIFFUSION FOR THE QUANTUM KICKED.. .. PHYSICAL REVIEW E66, 056210 (2002

shift and scale as the kick strengtlis varied. The exception

to the shifting of the resonances are the maxima and minima
observed ak=2ns for integern, which are directly related

to the phenomenon of quantum resonances which occur most
strongly at thes& values.

The quantities investigated are directly measurable, and,
using numerical simulations, we have extended our results to
a system with a finite pulse length and various noise sources
which are common in AOKR systems. Our results should be
realizable using current experimental techniques involving
the AOKR, with initial momentum distributions prepared ei-
ther using a Bose-Einstein condensate, or velocity selective
Raman transitions.

Diffusion Rate
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Effective Planck’s Constant

] ) o ) APPENDIX: SHEPELYANSKY'S RESULTS
FIG. 9. Comparison of simulated diffusion rates in the second
kick, D(2), for the quantum kicked rotor 4=0.005, 5 In this appendix we summarize the results of Shepelyan-
=10%, po,=0) with analytical values predicted from E@l2).  sky’s calculations of quantum correlations which led to his
Kick strengths arec=10 (solid lines and crossgand 13(dash-dot  predictions for the early-time diffusion rate in the QKR.
line and circles The points mark the simulated values, and the These calculations come from referen¢@s2], and are re-
lines mark analytical results. produced in more detail in Ref13].

From the alternative definition of the momentum diffusion

inferred by imaging the final cloud after the free expansionrate given in Eq.(6), we can expres®(n) as a sum over
period. Because of this, another possible concern for the exymmetrized correlation functions,

perimental realizablility of our results is that with diffusion 5 n-1

rates only being measured across two kicks, it may be diffi- B(n)= K S e (A1)
. . 2 L& q y

cult to resolve the resonance structures in the AOKR in terms i=Tn-1

of the width of the expanded cloud. However, calculations

based on the initial cloud size and the expansion times usedhere

in typical experiments have shown that both the magnitude 1 A A A A

of the diffusion rates and the variation in the dn‘fusm_)n rates Cq(i)= §(¢0|sin disin o+ sin gosin gi| o). (A2)
around the resonances are sufficiently large that this should

t lem.
not be a problem Under the assumption that the initial stdtg) is approxi-

mately uniform over phase space, so that
Vil SOMMARY (ol ™ 6"0] ) = 51060, (A3)
Our results predict a rich structure of resonances as a
function of the effective Planck’s constant in the diffusion where &; ; denotes the Kronecker delta, Shepelyansky de-
rate for the QKR with a sufficiently narrow initial momen- rived the following results:
tum distribution. For the second kick we have derived a rela-

tively simple, exact analytical result describing these reso- Cq(0)= 1

nances, and for higher kick numbers we observe related 2

structures in numerical simulations. On short timescales, the Cq(1)=0,

resonances exhibit a more complicated structure than those

predicted by Shepelyansky for a system with a broad initial Co(2)= Jo(Kg) (A4)
momentum distribution, although our results agree with q 2

those of Shepelyansky in the appropriate limits. The spacing 2 2

and position of the resonances change if the center of the Cu(3)= J3(Kq) —Ji(Ky)

initial momentum distribution is shifted, and in general they 9 2 '
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2 —3/2 ~ 2 1
a2, ~B(5)= [ 3 -9y - 32Ky + K + K |

(A5)

We can also see that under the assumption of uniform initial
3 conditions we obtain D(2)= (K2/2)E,,_1Cq(i) K214,
whereK = 2«sin{/2)/k andO(K, **) denotes terms of the \yhich is the same as the classical result, but in contrast with

order Oqu 2. From this, Shepelyansky estimated the earthe result derived in this article for the case of a narrow
lytime quantum diffusion rate to be initial momentum distribution.
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