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Early time diffusion for the quantum kicked rotor with narrow initial momentum distributions

A. J. Daley* and A. S. Parkins
Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand

~Received 27 June 2002; published 26 November 2002!

We investigate analytically and numerically early-time momentum diffusion rates for thed-kicked rotor
across the quantum to classical transition, i.e., as increased total system action produces more macroscopic
dynamics. For sufficiently narrow initial momentum distributions we find a rich structure of resonances in
these diffusion rates as a function of the effective Planck’s constant. Our study is set in the physical context of
the atom optics kicked rotor, and numerical simulations confirm that the resonances persist with kicks of finite
duration and with other typical experimental imperfections, such as spontaneous emission noise. Our results
should be testable in experiments where narrow initial momentum distributions are prepared using, for ex-
ample, velocity selective Raman transitions or Bose-Einstein condensates.
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I. INTRODUCTION

In recent years there has been much interest in stud
the transition from quantum to classical behavior in t
d-kicked rotor~DKR!, as an example of a nonlinear dynam
cal system which exhibits contrasting behavior in the t
regimes. In particular, the chaotic diffusion in the classi
DKR is completely suppressed by coherence effects in
analogous quantum system@1,2#. This phenomenon, known
as dynamical localization, has been demonstrated, along
many other properties of the DKR, in atom optics expe
ments in which a cloud of laser-cooled atoms interacts wit
pulsed standing wave of light@3#. In these experiments, th
DKR must be generalized to kicks of finite length, and t
resulting system is referred to simply as the kicked rotor

Recently there have been several studies of reson
phenomena in the diffusion rates for the DKR as the dyna
ics of the system are made more macroscopic or less ma
scopic by varying the total system action, i.e., by varying
effective Planck’s constant for the system. These stud
have focused largely on the diffusion rates found in the la
time regime when the process of dynamical localization
disturbed by a fixed level of decoherence. Decoherence
duced by various forms of environmental coupling has b
investigated, including continuous position measureme
@4# and, specifically in the atom optics kicked rotor~AOKR!,
spontaneous emission decoherence@5#. The diffusion reso-
nances found for spontaneous emission decoherence
also been verified in AOKR experiments@6–8#.

Resonances are also known to occur in early-time m
mentum diffusion rates for the quantum DKR, that is, t
diffusion rates after just a few kicks. These resonances
pear in results derived by Shepelyansky@9#, and have also
been investigated numerically for the AOKR@5#. However,
these studies have typically taken place in the context o
system with a relatively broad initial momentum distributio
~e.g., for the AOKR in Ref.@5#, with a thermal distribution
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corresponding to a temperature of around 10mK). For such
initial momentum distributions, the momentum diffusio
rates for the first two kicks in the quantum and classi
systems are equal, giving a short period of time over wh
quantum mechanical effects are essentially unimportan
determining the dynamics of the system.

However, recent experiments in quantum chaos using c
atoms in optical potentials have begun with much narrow
initial momentum distributions, either by using Bos
Einstein condensates@10# or by selecting a slice of a therma
distribution using velocity selective Raman transitions@11#.
In this article, we show that for a sufficiently narrow initia
momentum distribution, a much richer structure of diffusi
resonances in action space is observed than that predicte
the results of Shepelyansky. These resonances ariseeven in
the second kick, for which we derive an exact result. We als
use numerical simulations to investigate the correspond
resonances in kicks 3–5. These resonances are pronou
and should be observable experimentally; this is emphas
by our numerical simulations, which extend these results
system with a finite pulse length and physically realistic le
els of noise. Our analytical results are applicable generic
to the quantum DKR, but we set our study in the context
the AOKR to emphasize that our results should be direc
testable against experiments with cold atoms.

II. THE SYSTEM

The AOKR is realized using a cloud of ultracold atom
which interact with a standing wave of laser light of fr
quencyv l , detuned far from the frequencyw0 of the appro-
priate atomic transition. The laser is pulsed with periodT and
pulse profile f (t). Due to the large detuning, the intern
atomic dynamics can be eliminated, and the resulting sin
particle Hamiltonian~for just the external degrees of free
dom! is @3#

Ĥ5
p̂2

2m
2

\Ve f f

8
cos~2kl x̂! (

n51

N

f ~ t2nT!, ~1!

where x̂ and p̂ are the atomic position and momentum o
erators, respectively, andkl is the wave number of the lase
light. The effective potential strength isVe f f5V2/d, where
V/2 is the resonant Rabi frequency, andd is the detuning

:
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A. J. DALEY AND A. S. PARKINS PHYSICAL REVIEW E66, 056210 ~2002!
from resonance. These quantities may be adjusted to acc
for hyperfine levels in any particular atomic species~see, for
example, Ref.@5#!. We can rewrite this Hamiltonian in di
mensionless units as

Ĥ85
r̂2

2
2kcosf̂ (

n51

`

f ~ t82n!. ~2!

Here, f̂52kl x̂, r̂52klTp̂/m, t85t/T, and Ĥ8

5(4kl
2T2/m)Ĥ. The classical stochasticity parameter

given by k5Ve f fvRTtp , wheretp is the pulse length and
vR5\kl

2/2m. In laboratory experiments it is common t
choosef (t8) to be a square pulse, i.e.,f (t8)51 for 0,t8
,a, wherea5tp /T, in which casek5k/a. If we choose
f (t8) to be d(t8), then this system reduces to the stand
DKR, andk5k.

In the case of the DKR, the evolution of the system in t
Heisenberg picture is represented by the standard map,

f̂n115f̂n1 r̂n , ~3a!

r̂n115 r̂n1ksin~f̂n11!, ~3b!

wheref̂n5f̂(t85n) and r̂n5 r̂(t85n), with the values re-
corded immediately after the kick att85n. Note that there
are multiple definitions of the standard map, and in this o
the first kick occurs att851.

In the scaled units, we have@f̂,r̂ #5 ik–, with k–58vRT.
Thus the quantum nature of the system is reflected by
effective Planck’s constantk– which scales as we change th
total action in the system by altering the pulse periodT. Note
that with reference to the effective Planck’s constant we
rewrite the relationship between the scaled momentum u
r and unscaled momentum unitsp as

p/~2\kl !5r/k–. ~4!

III. BACKGROUND

We define the momentum diffusion rate to be the cha
in the kinetic energy from one kick to the next,

D~n!5
^r̂n

2&
2

2
^r̂n21

2 &
2

. ~5!

Some investigations of momentum diffusion rates in both
quantum and classical DKR systems have used an altern
definition,

D̃~n!5
^~ r̂n2 r̂0!2&

2
2

^~ r̂n212 r̂0!2&
2

. ~6!

For sufficiently narrow momentum distributions and hi
kick strengths, these two definitions are essentially equ
lent. We choose the first definition because it represents
quantity which is directly measured in experimental studi

The primary analytical investigation of early-time qua
tum diffusion rates in the DKR was made by Shepelyan
05621
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@9,12#. Using the alternative definitionD̃(n) for the diffusion
rate and assuming a uniform distribution of initial conditio
in position and momentum space, he estimated the quan
diffusion rate for small kick numbers by computing a ser
of quantum correlations.~These calculations are reproduce
in more detail in Ref.@13#, and the results are summarized
the Appendix.! Shepelyansky’s results predict broad res
nances in the early-time diffusion rates as a function ofk–, in
particular for kicks 3–5. The correlations he evaluated a
lead to the conclusion that diffusion rates for the first tw
kicks, D(1) andD(2), should be equal, and should be th
same as the diffusion rate in the classical system for th
two kicks for allk–, i.e.,D(1)5D(2)5k2/4 ~see the Appen-
dix!. This has been verified numerically@5# in the context of
the AOKR with a typical thermal initial momentum distribu
tion at a temperature of 10mK, which corresponds to a dis
tribution with a Gaussian width in unscaled units~p! of
sp /(2\kl)54.

However, to our knowledge, no one has previously look
in detail at the equivalent results with much narrower init
momentum distributions, despite the fact that such distri
tions are accessible experimentally. In fact, using Ram
transitions, Stecket al. have isolated momentum distribu
tions with widths as narrow assp /(2\kl)50.03 @11#. Fur-
thermore, for sufficiently small values ofk–, the initial mo-
mentum distribution in scaled units becomes very narr
even for ordinary thermal distributions, because Eq.~4! leads
to a scaling of the width of the initial momentum distributio
with k– of the form sr5k–sp /(2\kl). For such momentum
distributions Shepelyansky’s assumptions of uniform init
conditions break down. As we will demonstrate in the r
maining sections of this article, this leads to diffusion ra
on short timescales, includingD(2), which exhibit consid-
erably more structure than that predicted for the case con
ered by Shepelyansky.

IV. ANALYTICAL RESULTS FOR THE SECOND KICK

We can evaluate the diffusion rate for the DKR in th
second kick,D(2), by expanding the definition in Eq.~5!
using the quantum standard map given in Eq.~3!. Specifi-
cally, we can write

D~2!5^r̂2
2&/22^r̂1

2&/2

5
k2

2
^sin2~f̂2!&1

k

2
^r̂1sin~f̂2!1sin~f̂2!r̂1&

5
k2

2
^sin2~ r̂11f̂1!&1

k

2
^r̂1sin~f̂11 r̂1!

1sin~f̂11 r̂1!r̂1&. ~7!

We first evaluate the expectation values for a single mom
tum eigenstate,ur0&, and then take an incoherent avera
over a Gaussian momentum distribution to obtain a final
pression forD(2). Evaluating the expectation values for th
single momentum eigenstate is algebraically intensive,
0-2
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EARLY TIME DIFFUSION FOR THE QUANTUM KICKED . . . PHYSICAL REVIEW E66, 056210 ~2002!
involves multiple applications of several identities. Most n
tably, we require two special cases of the Baker-Hausd
relation, in particular,

eÂ1B̂5eB̂eÂe[ Â,B̂]/2 ~8!

for Â and B̂ such that@Â,@Â,B̂##5@B̂,@B̂,Â##50, and

exp~Â1B̂!5exp@B̂~ec21!/c#exp~Â!, ~9!

for Â andB̂ such that@Â,B̂#5cB̂, wherec is a constant. We
also make use of the Bessel function identities

cos@zsin~u!#5J0~z!12(
k51

`

J2k~z!cos~2ku!

and

sin@zsin~u!#52(
k50

`

J2k11~z!sin@~2k11!u#,

whereJn(z) is an ordinary Bessel function of ordern.
This derivation is presented in detail in Ref.@14#. The

expectation value for a single momentum eigenstate is fo
to be

^r0ur̂2
2ur0&2^r0ur̂1

2ur0&

5
1

2
k2@12J2~K2q!cos~2r0!#22kJ1~Kq!r0sin~r0!

1k2@J0~Kq!2J2~Kq!#cos~r0!cos~k–/2!, ~10!

where Kq52ksin(k–/2)/k– and K2q52ksin(k–)/k–. If we now
average this over an incoherent Gaussian distribution or0

values which is centered onr 0̄ and has widthsr , we obtain
the result

2D~2!5
1

2
k2@12J2~K2q!e22sr

2
cos~r 0̄!#22kJ1~Kq!

3@sr
2e2sr

2/2cos~r 0̄!1r 0̄e2sr
2/2sin~r 0̄!#

1k2@J0~Kq!2J2~Kq!#cos~k–/2!e2sr
2/2cos~r 0̄!.

~11!

This is our final expression for the diffusion rate in th
second kick, and we notice immediately that it reduces to
quasilinear value as the initial momentum distribution b
comes broader, but it predicts complicated and interes
structure as a function ofk– for sufficiently smallsr .

In the particular case wherer 0̄50, we obtain the result

2D~2!5
1

2
k2~12J2~K2q!e22sr

2
!22kJ1~Kq!sr

2e2sr
2/2

1k2@J0~Kq!2J2~Kq!#cos~k–/2!e2sr
2/2. ~12!
05621
-
ff

d

e
-
g

Fig. 1 shows Eq.~12! plotted as a function ofk– for three
values of k and four values ofsn5sp /(2\kl) ~i.e., sr

5snk–). We choose to vary the width of the initial momen
tum distribution in this way because in experiments using
AOKR, it is common to choose the initial temperature of t
cloud, and then fix this value whilek– is varied. This corre-
sponds to a fixed width in real momentum units, and henc
varying width in our scaled units. We see, as we expect,
for large values ofsn , the diffusion rate is quasilinear excep
at low values ofk–, where it tends to the diffusion rate for
single initial eigenstate,ur050&, as k–→0 andsr→0. For
lower values ofsn , we see a complicated resonance stru
ture as a function ofk–. This structure is a specifically quan
tum mechanical effect, because it relies on thek– dependence
of the correlations. It is particularly surprising that such
dramatic quantum effect can occur after only two kicks, a
it is interesting that the structure is very different to th
predicted by Shepelyansky. Moreover, we see from thesn
values in the figure that the initial momentum distributio
which produce this structure should be experimentally re
izable, as momentum distributions withsn,0.1 can be pro-
duced using velocity selective Raman transitions, as dem
strated in Ref.@11#, and using Bose-Einstein condensat
@10#.

We note that as the kick strengthk is increased, the reso
nance peaks shift to higherk– values, and increase in magn
tude. Extra structure is also introduced at lowk– values for

FIG. 1. Diffusion rates in the second kick,D(2), for thequan-
tum d-kicked rotor as a function ofk– plotted for various values of
sn5sp /(2\kl), with r 0̄50, as predicted by Eq.~12!. Kick
strengths arek510 ~solid line!, 15 ~dashed line!, and 20~dash-dot
line!.
0-3
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A. J. DALEY AND A. S. PARKINS PHYSICAL REVIEW E66, 056210 ~2002!
largerk. This introduction of new structure continues to o
cur even fork values much larger than 20.

It is interesting to investigate how the resonance struc
in the diffusion rate during the second kick changes if
initial momentum distribution is not centered onr 0̄50. Eq.
~11! is plotted in Fig. 2 for various values ofr n̄5r 0̄/k–

5p0̄/(2\kl), with sn50.1. As with the diffusion rates fo
r 0̄50, these rates exhibit interesting structure, which
washed out for largesn . This washing out can be seen fro
the dependence of Eq.~11! on the width of the initial mo-
mentum distribution. The most interesting feature here is
the positions of the diffusion rate resonances are stron
dependent on the value ofr n̄. This is partly because differen
values ofr 0̄ give different weighting to different terms in th
diffusion rate expression, but much of the variation resu
from thek– dependence ofr 0̄ that occurs due to the scaling o
our momentum units. Again, because it is possible to cre
initial momentum distributions with nonzero mean mome
tum with respect to the standing wave axis~see, for example
reference@11#!, the initial momentum distributions which
lead to these results should be experimentally realizable

Another perspective on the variation ofD(2) as a func-
tion of k, k–, andr n̄ is provided by Figs. 3–5. These figure
show surface plots ofD(2) as a function of bothk andk– for

FIG. 2. Diffusion rates in the second kick,D(2), for thequan-
tum d-kicked rotor with sn50.1, plotted as a function ofk– for
various values ofr n̄5p0̄/(2\kl), as predicted by Eq.~11!. Kick
strengths arek510 ~solid line!, 15 ~dashed line!, 20 ~dash-dot line!.
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three different initial momentum eigenstates,ur050&, ur0

50.5k–&, andur05k–& ~i.e.,rn50, 0.5, and 1.0!. Note that the
diffusion rates have been divided byk2 so as to emphasize
the positions of the diffusion resonances, rather than the
crease in the rates ask becomes larger. Note also that th
plots in Figs. 3–5 change only slightly if we consider a
initial distribution of momenta, provided the width of thi
distribution sn,0.1. This is actually apparent from a com
parison with corresponding curves in Figs. 1 and 2.

It is interesting to examine the relationship between
resonance structure observed here and so-called ‘‘quan
resonances,’’ which have been the subject of numerous
vestigations, such as the original treatments in Refs.@15–17#
and the more recent analysis in Refs.@18,19#. Quantum reso-
nances occur for particular values ofk–, given appropriate
initial conditions. For example, consider an initial mome

FIG. 3. Surface plot ofD(2)/k2, for the quantumd-kicked rotor

with an initial momentum eigenstate,rn50, as a function ofk– and
k, as predicted by Eq.~11!.

FIG. 4. Surface plot ofD(2)/k2, for the quantumd-kicked rotor
with an initial momentum eigenstate,rn50.5, as a function ofk–

andk, as predicted by Eq.~11!.
0-4
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EARLY TIME DIFFUSION FOR THE QUANTUM KICKED . . . PHYSICAL REVIEW E66, 056210 ~2002!
tum eigenstateur05 jk–&, wherej is an integer. Through the
kicking process, this state can only couple to eigenstateur
5( j 1 j 8)k–&, where j 8 is also an integer. Ifk– is an even
multiple of 2p, then in between kicks the statesur5( j
1 j 8)k–& each accumulate the same phase„due to the free
evolution operator exp@ir̂2/(2k–)#…, which is identically one.
This leads to a ballistic energy growth, and dynamical loc
ization does not occur.

In contrast, ifk– is an odd multiple of 2p, then the phase
may be either11 or 21, and one finds, quite remarkabl
that the system returns identically to its initial state af
every second kick@16#. This effect is known as a ‘‘quantum
antiresonance,’’ and shows up in Fig. 3 (r050) and Fig. 5
(r05k–) as a minimum inD(2)/k2 at k–52p „with value
D(2)52k2/4, which cancelsD(1)5k2/4 and returns the
system to its initial energy….

Conversely, forr050.5k– ~Fig. 4! we observe a maximum
in D(2) at k–52p. This occurs because for all states wi
momentar5( j 811/2)k–, with j 8 an integer, the accumulate
phase between kicks is (11 i)/A2, i.e., the same. This lead
to ballistic growth, withD(2)53k2/4, or, in terms of ener-
gies,E(n)5n2k2/41E(0).

The other resonances observed in these diffusion r
~i.e., those not occurring atk–52 j p for integer j ), are un-
doubtedly related to similar interference effects as those
cause ballistic motion at quantum resonances. This relat
ship could be very interesting, and deserves further inve
gation. However, the resonances we observe here are
solely the result of a simplification of the action of the fr
evolution operator on appropriate momentum eigenstate
we observe at quantum resonances. Instead, they exhi
nontrivial dependence on the value ofk, and appear to in-
volve a complicated interaction between the particular m
mentum states that the system couples to during the first
and the phase factors that those states accumulate during
evolution. This is illustrated by the dependence of the lo

FIG. 5. Surface plot ofD(2)/k2, for the quantumd-kicked rotor
with an initial momentum eigenstate,rn51, as a function ofk– and
k, as predicted by Eq.~11!.
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tion of these maxima on bothk andk– in Figs. 3–5. In addi-
tion, many diffusion resonances occur at values ofk– for
which we observe no clear periodic behavior asrn is varied.
Such behavior should be a characteristic of ‘‘regular’’ qua
tum resonances.

V. NUMERICAL RESULTS FOR KICKS 3 –5

To investigate similar results for kicks 3–5 we use n
merical simulations, as exact analytical results forD(n>3)
are complicated to obtain and because of their comple
would not significantly increase our understanding of t
system. These simulations are set in the context of
AOKR, and model a master equation which includes effe
due to spontaneous emission decoherence, the level of w
is characterized by the position averaged spontaneous e
sion probability per kick,h. Our simulations are based on
Monte Carlo wave function method, as described in Re
@5,20#. We typically use 1000 trajectories, sampled from t
appropriate initial momentum distribution, and after evolvi
each of the trajectories we take an incoherent average
the final momentum distributions.

Figures 6, 7, and 8 show the diffusion ratesD(3), D(4),
and D(5), respectively, and the early-time quantum diff
sion rate predicted by Shepelyansky, Eq.~A5! is shown as a
dotted line for comparison. It can be clearly seen that

FIG. 6. Comparison of simulated diffusion rates in the th
kick, D(3), for the quantum kicked rotor (a50.005, h
510%, k515, r 0̄50) with Shepelyansky’s analytical result@Eq.
~A5!#, for varying values ofsn5sp /(2\kl). The simulation results
are shown as points joined by a solid line, and the statistical er
in the points are approximately the same order of magnitude as
point markers. Shepelyansky’s result is shown as a dashed line
0-5



te
in
ha
e
m

th
.
o

or

-
t f
i-

r
a

sh

lly
tr

e
nly
ical
re-

ong

mu-

n-
e
ng,
able

ions
od-
the
dial
ing

to
se,
ro-

-
the
ely
is

rth

ro
t

e.

k,

rors
the
.

A. J. DALEY AND A. S. PARKINS PHYSICAL REVIEW E66, 056210 ~2002!
system generally settles into a diffusion regime with ra
similar to Shepelyansky’s values as the kick number
creases. However, we see a significant contrast in this be
ior for different values ofsn . Essentially, the broader th
initial momentum distribution, the more rapidly the syste
settles into this regime. The lower the value ofsn , the more
complicated structure~and thus the least agreement wi
Shepelyansky’s results! we observe in the diffusion rates
The most complex structure normally occurs at low values
k–, where the scaling of the initial momentum distribution f
the AOKR makes the distribution the most narrow.

It is interesting to note, forsn50.01, the behavior of the
maxima and minima atk–52p due to the quantum antireso
nance. As we expect, we observe a maximum at this poin
the diffusion rate in the third kick, but we observe a min
mum for the diffusion rate in the fourth kick~as the system
with an initial momentum eigenstateur050& would return
again to that initial eigenstate after every second kick!. Even
for such a narrow initial momentum distribution, howeve
the value at the minimum in the fourth kick is not as small
we would expect (2k2/4) for an initial stateur050&, and
the quantum resonance effects here are quite clearly wa
out by a broader initial momentum distribution.

VI. EXPERIMENTAL CONSIDERATIONS

In order to confirm that our results are experimenta
measurable, we need to investigate these resonance s

FIG. 7. Comparison of simulated diffusion rates in the fou
kick, D(4), for the quantum kicked rotor (a50.005, h
510%, k515, r 0̄50) with Shepelyansky’s analytical result@Eq.
~A5!#, for varying values ofsn5sp /(2\kl). The simulation results
are shown as points joined by a solid line, and the statistical er
in the points are approximately the same order of magnitude as
point markers. Shepelyansky’s result is shown as a dashed lin
05621
s
-
v-

f

or

,
s

ed

uc-

tures in the context of a kicked rotor with a finite puls
length, and with the addition of noise sources commo
present in an AOKR. To do this we use the same numer
simulations described in the previous section. Example
sults from these simulations are presented in Fig. 9, al
with the analytical results from Eq.~12!. These two sets of
results exhibit excellent quantitative agreement, as do si
lation results for other values ofk andsn . Similar simula-
tions with an initial momentum distribution which is not ce
tered onr50 also exhibit very good agreement with th
corresponding analytical results. This is very encouragi
and gives a strong indication that these results are realiz
in a real experimental system.

We have also added other noise sources to our simulat
such as amplitude noise on the kicking strength, which m
els variation in the intensity of the laser pulses producing
standing wave. In addition, we have accounted for a ra
Gaussian intensity profile of the standing wave by includ
in our model a small spread of kick strengths equivalent
that across the cloud of atoms. With realistic levels of noi
we still observe resonances which are sufficiently p
nounced to be experimentally measureable.

In a typical AOKR experiment, the initial cloud is re
leased from an optical trap, the cloud is kicked using
pulsed standing wave, and is then allowed to expand fre
for a certain period of time. The momentum distribution

rs
he

FIG. 8. Comparison of simulated diffusion rates in the fifth kic
D(5), for the quantum kicked rotor ~QKR! (a50.005, h
510%, k515,r 0̄50) with Shepelyansky’s analytical result@Eq.
~A5!#, for varying values ofsn5sp /(2\kl). The simulation results
are shown as points joined by a solid line, and the statistical er
in the points are approximately the same order of magnitude as
point markers. Shepelyansky’s result is shown as a dashed line
0-6
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EARLY TIME DIFFUSION FOR THE QUANTUM KICKED . . . PHYSICAL REVIEW E66, 056210 ~2002!
inferred by imaging the final cloud after the free expans
period. Because of this, another possible concern for the
perimental realizablility of our results is that with diffusio
rates only being measured across two kicks, it may be d
cult to resolve the resonance structures in the AOKR in te
of the width of the expanded cloud. However, calculatio
based on the initial cloud size and the expansion times u
in typical experiments have shown that both the magnit
of the diffusion rates and the variation in the diffusion ra
around the resonances are sufficiently large that this sh
not be a problem.

VII. SUMMARY

Our results predict a rich structure of resonances a
function of the effective Planck’s constant in the diffusio
rate for the QKR with a sufficiently narrow initial momen
tum distribution. For the second kick we have derived a re
tively simple, exact analytical result describing these re
nances, and for higher kick numbers we observe rela
structures in numerical simulations. On short timescales,
resonances exhibit a more complicated structure than th
predicted by Shepelyansky for a system with a broad ini
momentum distribution, although our results agree w
those of Shepelyansky in the appropriate limits. The spac
and position of the resonances change if the center of
initial momentum distribution is shifted, and in general th

FIG. 9. Comparison of simulated diffusion rates in the seco
kick, D(2), for the quantum kicked rotor (a50.005, h
510%, r 0̄50) with analytical values predicted from Eq.~12!.
Kick strengths arek510 ~solid lines and crosses! and 13~dash-dot
line and circles!. The points mark the simulated values, and t
lines mark analytical results.
05621
n
x-

-
s

s
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s
ld
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-
-
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e
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l

h
g
e

shift and scale as the kick strengthk is varied. The exception
to the shifting of the resonances are the maxima and min
observed atk–52np for integern, which are directly related
to the phenomenon of quantum resonances which occur m
strongly at thesek– values.

The quantities investigated are directly measurable, a
using numerical simulations, we have extended our result
a system with a finite pulse length and various noise sou
which are common in AOKR systems. Our results should
realizable using current experimental techniques involv
the AOKR, with initial momentum distributions prepared e
ther using a Bose-Einstein condensate, or velocity selec
Raman transitions.
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APPENDIX: SHEPELYANSKY’S RESULTS

In this appendix we summarize the results of Shepely
sky’s calculations of quantum correlations which led to h
predictions for the early-time diffusion rate in the QKR
These calculations come from references@9,12#, and are re-
produced in more detail in Ref.@13#.

From the alternative definition of the momentum diffusio
rate given in Eq.~6!, we can expressD̃(n) as a sum over
symmetrized correlation functions,

D̃~n!5
k2

2 (
i 52n21

n21

Cq~ i !, ~A1!

where

Cq~ i !5
1

2
^c0usinf̂ isinf̂01sinf̂0sinf̂ i uc0&. ~A2!

Under the assumption that the initial stateuc0& is approxi-
mately uniform over phase space, so that

^c0ueimf̂0ein r̂0uc0&5dm,0dn,0 , ~A3!

where d i , j denotes the Kronecker delta, Shepelyansky
rived the following results:

Cq~0!5
1

2
,

Cq~1!50,

Cq~2!5
J2~Kq!

2
, ~A4!

Cq~3!5
J3

2~Kq!2J1
2~Kq!

2
,

d
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Cq~4!5
J2

2~Kq!1O~Kq
23/2!

2
,

whereKq52ksin(k–/2)/k– andO(Kq
23/2) denotes terms of the

order ofKq
23/2. From this, Shepelyansky estimated the e

lytime quantum diffusion rate to be
ys
n

i.

hy

ys

d

.

,
.

05621
-

Dq'D̃~5!'
k2

2 S 1

2
2J2~Kq!2J1

2~Kq!1J2
2~Kq!1J3

2~Kq! D .

~A5!

We can also see that under the assumption of uniform in
conditions we obtain D̃(2)5(k2/2)( i 521

1 Cq( i )5k2/4,
which is the same as the classical result, but in contrast w
the result derived in this article for the case of a narr
initial momentum distribution.
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